skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fortunato, Ronald"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Introduction: Dissection or rupture of the aorta is accompanied by high mortality rates, and there is a pressing need for better prediction of these events for improved patient management and clinical outcomes. Biomechanically, these events represent a situation wherein the locally acting wall stress exceed the local tissue strength. Based on recent reports for polymers, we hypothesized that aortic tissue failure strength and stiffness are directly associated with tissue mass density. The objective of this work was to test this novel hypothesis for porcine thoracic aorta. Methods: Three tissue specimens from freshly harvested porcine thoracic aorta were treated with either collagenase or elastase to selectively degrade structural proteins in the tissue, or with phosphate buffer saline (control). The tissue mass and volume of each specimen were measured before and after treatment to allow for density calculation, then mechanically tested to failure under uniaxial extension. Results: Protease treatments resulted in statistically significant tissue density reduction (sham vs. collagenase p = 0.02 and sham vs elastase p = 0.003), which in turn was significantly and directly correlated with both ultimate tensile strength (sham vs. collagenase p = 0.02 and sham vs elastase p = 0.03) and tangent modulus (sham vs. collagenase p = 0.007 and sham vs elastase p = 0.03). Conclusions: This work demonstrates for the first time that tissue stiffness and tensile strength are directly correlated with tissue density in proteolytically-treated aorta. These findings constitute an important step towards understanding aortic tissue failure mechanisms and could potentially be leveraged for non-invasive aortic strength assessment through density measurements, which could have implications to clinical care. 
    more » « less
  2. We examine the stretching behavior of rubber–plastic composites composed of a layer of styrene–ethylene/propylene–styrene (SEPS) rubber, bonded to a layer of linear low density polyethylene (LLDPE) plastic. Dog-bone shaped samples of rubber, plastic, and rubber–plastic bilayers with rubber : plastic thickness ratio in the range of 1.2–9 were subjected to uniaxial tension tests. The degree of inhomogeneity of deformation was quantified by digital image correlation analysis of video recordings of these tests. In tension, the SEPS layer showed homogeneous deformation, whereas the LLDPE layer showed necking followed by stable drawing owing to its elastoplastic deformation behavior and post-yield strain hardening. Bilayer laminates showed behavior intermediate between the plastic and the rubber, with the degree of necking and drawing reducing as the rubber : plastic ratio increased. A simple model was developed in which the force in the bilayer was taken as the sum of forces in the plastic and the rubber layers measured independently. By applying a mechanical energy balance to this model, the changes in bilayer necking behavior with rubber thickness could be predicted qualitatively. 
    more » « less